viernes, 7 de noviembre de 2014

RELIEVE TERRESTRE

Bienvenidos nuevamente a DE TODO UN POCO!!!

RELIEVE TERRESTRE

Orígenes del relieve:
  • Teoría de Wegener: El astrónomo y meteorólogo alemán Alfred Wegener (1880-1930) fue quien propuso que los continentes en el pasado geológico estuvieron unidos en un supercontinente de nombre Pangea, que posteriormente se habría disgregado por deriva continental. Su libro Entstehung der Kontinente und Ozeane (La Formación de los Continentes y Océanos; 1915) tuvo poco reconocimiento y fue criticado por falta de evidencia a favor de la deriva, por la ausencia de un mecanismo que la causara, y porque se pensaba que tal deriva era físicamente imposible.A pesar del apoyo de sus colaboradores cercanos y de su reconocida capacidad como docente, Wegener no consiguió una plaza definitiva en Alemania y se trasladó a Graz, en Austria, donde fue más ampliamente reconocido.Los principales críticos de Wegener eran los geofísicos y geólogos de los Estados Unidos y de Europa. Los geofísicos lo criticaban porque los cálculos que habían llevado a cabo sobre los esfuerzos necesarios para desplazar una masa continental a través de las rocas sólidas en los fondos oceánicos resultaban con valores inconcebiblemente altos. Los geólogos no conocían bien las rocas del hemisferio sur y dudaban de las correlaciones propuestas por el científico alemán.En 1937, el geólogo sudafricano Alexander Du Toit publicó una lista de diez líneas de evidencia a favor de la existencia de dos supercontinentes, Laurasia y Gondwana, separados por un océano de nombre Tethys el cual dificultaría la migración de floras entre los dos supercontinentes.Du Toit también propuso una reconstrucción de Gondwana basada en el arreglo geométrico de las masas continentales y en correlación geológica. Hoy en día el ensamble de los continentes se hace con computadoras digitales capaces de almacenar y manipular enormes bases de datos para evaluar posibles configuraciones geométricas.Sigue habiendo cierto desacuerdo en cuanto a la posición de los distintos continentes actuales en Gondwana. 
  • Teorías de la tectónica de placas(Alfred Wegener): La tectónica de placas considera que la litósfera está dividida en varios grandes segmentos relativamente estables de roca rígida, denominados placas que se extienden por el globo como caparazones curvos sobre una esfera. Existen siete grandes placas como la Placa del Pacífico y varias más chicas como la Placa de Cocos frente al Caribe.Por ser las placas parte de la litósfera, se extienden a profundidades de 100 a 200 km. Cada placa se desliza horizontalmente relativa a la vecina sobre la roca más blanda inmediatamente por debajo. Más del setenta por ciento del área de las placas cubre los grandes océanos como el Pacífico, el Atlántico y el Océano Indico.En la década de los cincuenta, del siglo veinte, se señaló que las direcciones de magnetización de las rocas antiguas, que son divergentes, podrían hacerse coincidir si se aceptaba que había ocurrido un movimiento relativo de los continentes. (Teoría de Wegener)Esa constatación está de acuerdo con la teoría de la existencia hace doscientos millones de años de Pangea o Continente único que con el paso del tiempo ha llegado a la situación geográfica actual.Chile se enfrenta a la placa de Nazca que es alimentada desde la Cordillera Mezo-dorsal del Pacífico por surgimiento del magma que crea nuevo fondo marino y la empuja hacia la placa Sudamericana, produciéndose un fenómeno de subducción, origen de los sismos ocasionados por este choque.La placa de Nazca se desplaza a una velocidad relativa de aproximadamente 9 cm por año con respecto a la placa Sudamericana, introduciéndose bajo ella según un plano inclinado (plano de Benioff). En el largo plazo, estas fuerzas tectónicas han causado el plegamiento de la placa Sudamericana y la formación de las cadenas de la Cordillera de los Andes y la Cordillera de la Costa.Debido a que la zona de contacto entre las placas está sometida a grandes presiones a causa del movimiento convergente, ambas placas están mutuamente acopladas y previo a la ruptura se deforman elásticamente a lo largo de su interfase común.Inmediatamente antes de la ruptura sólo una pequeña área, firmemente acoplada, resiste el movimiento de las placas. Cuando el acoplamiento en la última zona de resistencia (una "aspereza sísmica") es sobrepasado, el esfuerzo acumulado es liberado bruscamente, enviando ondas de choque a través de la tierra. La ruptura comienza en el hipocentro del terremoto, esto es, bajo el epicentro, y luego se propaga a lo largo de una zona cuya extensión depende de la importancia del evento.Obsérvese que, según lo dicho, el borde de subducción es lugar de concentración de sismos; y el destino final de la placa que se hunde es alcanzar el magma a gran profundidad y completar así el ciclo de convección térmica.
Actividades internas del planeta:
  • Volcanes: En muchos lenguajes, la palabra volcán significa literalmente "montaña que humea". En castellano "Volcán" proviene del latín Vulcano, referido al Dios del Fuego de la mitología romana, que a su vez deriva del Dios Hefesto de la mitología griega. De una manera algo más formal puede utilizarse la definición de MacDonald (1972) y decirse que un volcán es aquel lugar donde la roca fundida o fragmentada por el calor y gases calientes emergen a través de una abertura desde las partes internas de la tierra a la superficie. La palabra volcán también se aplica a la estructura en forma de loma o montaña que se forma alrededor de la abertura mencionada por la acumulación de los materiales emitidos. Generalmente losvolcanes tienen en su cumbre, o en sus costados, grandes cavidades de forma aproximadamente circular denomidas cráteres, generadas por erupciones anteriores, en cuyas bases puede, en ocasiones, apreciarse la abertura de la chimenea volcánica.Los materiales rocosos que emite un volcán pueden ser fragmentos de las rocas "viejas" que conforman la corteza o la estructura del volcán, o bien "rocas nuevas" o recién formadas en la profundidad. Las rocas "nuevas" pueden ser arrojadas por el volcán en estado sólido o fundidas. Magma es la roca fundida que se encuentra en la parte interna del Volcán, que cuando alcanza la superficie, pierde parte de los gases que lleva en solución. Lava es el Magma o material rocoso "nuevo", líquido o sólido, que ha sido arrojado a la superficie.Comúnmente, las lavas recién emitidas se encuentran en el rango de temperaturas entre 700 °C y 1200 °C, dependiendo de su composición química. Todas las rocas que se han formado a partir del enfriamiento de un magma se llaman rocas ígneas. Cuando el enfriamiento tuvo lugar en el interior de la tierra, y las rocas fundidas no llegaron a emerger a la superficie, se llaman rocas ígneas intrusivas. Cuando la roca se ha formado ha partir del enfriamiento de lava en la superficie, se denomina roca ígnea extrusiva. A todas las rocas que han sido producidas por algún tipo de actividad volcánica, sean intrusivas o extrusivas, se les llamam rocas volcánicas. Pero no todas las rocas ígneas son volcánicas.Existen grandes masas de rocas ígneas intrusivas, denominada plutónicas , que se han enfriado a gran profundidad , sin estar asociadas a ningún tipo de actividad volcánica.
    Algunas de las rocas plutónicas más comunes son, por ejemplo , ciertos tipos de granito.
    La emisión de material rocoso y gases a alta temperatura es lo que se denomina una erupción volcánica. Cuando ésta es el resultado directo de la acción del magma o de gas magmático, se tiene una erupción magmática. Las erupciones pueden resultar también como efecto del resultado también como efecto del calentamiento de cuerpos de agua por magma o gases magmáticos. Cuando el cuerpo de agua es un acuífero subterráneo, la erupción generada por el sobrecalentamiento de este por efectos magmáticos, se denomina erupción freática. Este tipo de erupciones generalmente extruye fragmentos de roca sólida " vieja" , producidos por las explosiones de vapor. En algunos casos, este tipo de erupciones pueden emitir también productos magmáticos mezclados con los de la erupción de vapor. Si este es el caso, la erupción se denomina freatomagmática.Es común que, después de una gran erupción magmática o freatomagmática, una formación de lava muy viscosa empiece a crecer en el  del cráter por la chimenea volcánica, formando una estructura en una forma de cúpula a la que se llama domo, que puede crecer hasta cubrir por completo al cráter.Los materiales rocosos fragmentados emitidos por una erupción, lanzados en forma sólida o líquida, se denominan piroclastos. Qué tan fina sea la fragmentación de los piroclastos dependen de la intensidad de la erupción explosiva . Estos, al depositarse en el suelo, pueden cementarse por varios procesos, tales como solidificación, por enfriamiento si venían fundidos, o por efecto del agua, etc. Los piroclastos cementados forman las rocas piroclásticas.Una forma genérica de referirse a los productos piroclásticos, cualesquiera que sea su forma , es tefra. A los fragmentos de tefra de menor tamaño (menores de 2mm) se les llama ceniza, y a los mayores lapilli. El magma , antes de emerger en una eruppción , se acumula bajo el volcán a profundidades de unos cuantos kilómetros en una cámara magmática.Las erupciones explosivas pueden  densas columnas de tefra que ocasionalmente penetran la estratosfera y alcanzan alturas superiores a los 20 km; éstas son las columnas eruptivas.Durante una erupción explosiva, el magma al alcanzar la superficie, produce grandes cantidades de gas, que traía en solución y libera enormes cantidades de energía por diversos procesos. Esta diversidad de mecanismos presentes en la erupción, hace difícil medir su tamaño. Así, en contraste con la sismología, en la que se mide el tamaño de un temblor enfunción de la energía elástica que libera en forma de ondas sísmicas; en vulcanología la medida del tamaño de una erupción es un problema que no está del todo resuelto .Walker (1980) sugirió que se necesitan cinco parámetros para caracterizar adecuadamente la naturaleza y tamaño de una erupción explosiva: Magnitud de masa , es la masa total del material eruptado. Intensidad , es la razón a la que el magma es expulsado (masa/tiempo). Poder dispersivo , es el área sobre el cual se distribuyen los productos volcánicos y está relacionada con la altura de la columna eruptiva. Violencia , es una medida de la energía cinética liberada durante las explosiones, relacionada con el alcanze de los fragmentos lanzados, Potencial destructivo, es una medida de la extensión de la destrucción de edificaciones, tierras cultivables y vegetación, producida por una erupción.En 1955 Tsuya definió una escala de magnitudes basadas en el volumen de los distintos tipos de materiales eruptados. La escala de Tsuya se incluye en la tabla 2. En 1957 Yokoyama y en 1963 Hédervari, propusieron extender las escalas de volumen a una escala de Magnitud de energía , basada en la relación de proporcionalidad directa entre la masa del material emitido, su volumen y la energía liberada. Recientemente, De la Cruz-Reyna(1990) definió una escala de magnitudes basada en la relación entre el tamaño de las erupciones y su razón global de ocurrencia. Una medida del tamaño de las erupciones que combina algunos de los parámetros anteriores (dependiente de la disponibilidad de información ), es el índice de explosividad volcánica.

Tipos de volcanes


1.- Conos de Ceniza.
Estos conos se forman por el apilamiento de escorias o ceniza durante las erupciones basálticas, en las que predominan los materiales calientes solidificados en el aire, y que caen en las proximidades del centro de emisión. Las paredes de un cono no pueden tener en este caso pendientes muy altas, por lo que generalmente tienen ángulos comprendidos entre 300 y 400 . Son de forma cónica, base circular, y no pocas veces exceden los 300m de altura. Como ejemplo se puede mencionar al Volcán Xitle, ubicado en la falda Norte del Ajusco,

D.F. y otros muchos volcanes que se encuentran en la zona monogenética de Michoacán - Guananjuato .

2.- Volcanes en escudo.

Son aquellos cuyo diámetro es mucho mayor que su altura. Se forman por la acumulación sucesiva de corrientes de lava muy fluídas, por lo que son de poca altura y pendiente ligera. Su topografía es suave y su cima forma una planicie ligeramente encorporadas. Como ejemplo de este tipo de volcanes están los volcanes hawaianos y los de las Islas Galápagos. Ocasionalmente se observan volcanes de escudo con un cono de ceniza o escoria en su cúspide, como es el caso del volcán Teutli en Milpa Alta, D.F.

3.- Volcanes estratificados.

Son los formados por capaz de material fragmentario y corientes de lava intercaladas, lo que indica que surgieron en épocas de actividad explosiva, seguidas por otras donde se arrojaron corrientes de lava fluida. Como ejemplo de estos están los volcanes más altos de nuestro país ; Popocatépetli, Fuego de Colima, etc.
Como se ha indicado antes, las erupciones volcánicas pueden ser clasificadas de varias maneras, de acuerdo con sus características . Una de las más tradicionales es aquella basada en los nombre de los volcanes de los cuales constituyen una actividad típica, o de alguna erupción históricamente famosa. Así se tienen erupciones, entre otras, de tipo Hawaiano, Stromboliano, Vulcaniano, Peléeano, Pliniano,etc. según tengan las caracteristicas que más frecuentemente aparecen en los volcanes de Hawai, en el Stromboli, en el Vulcano, en el Monte Pelée, o de la erupción del Vesubio en el año 79 D.C., descrita por Plinio el Jóven, etc. Esta clasificación no es realmente muy adecuada, ya que estos volcanes pueden presentar muy diversos tipos de actividad en un momento dado. No obstante, dada la frecuencia con que se menciona.

DEFINICIÓN Y CLASIFICACIÓN DE CALIMIDADES DE ORIGEN VOLCANICO Y SUS EFECTOS


A.- FLUJOS DE LAVA

Son lenguas coladas de lava que pueden ser emitidas desde un cráter superior, algún cráter secundario, desde una fisura en el suelo o sobre los flancos de un volcán impulsados por la gravedad; estos flujos se distribuyen sobre la superficie , según la topografía del terreno. En términos generales se producen en erupciones de explosividad baja o intermedia y elriesgo asociado a esa manifestación está directamente ligado a la temperatura y composición de lava, a las pendientes del terreno y a la distribución de población .
Las distintas temperaturas y composiciones de la lava pueden originar diversos tipos de flujos. Las palabras hawaianas "aa" y "pahoehoe" denotan dos de los flujos de lava más comunmente observados alrededor de numerosos volcanes basálticos o andesítico - basálticos de todo el mundo. Estos flujos se caracterizan principalmente por las texturas de sus superficies.
El pahoehoe tiene una corteza de textura relativamente suave, que se dobla y tuerce en forma similar a como lo hace una tela gruesa o una serie de cuerdas trenzadas. Durante su desarrollo, la superficie del flujo de lava se enfría y alcanza un estado semi-sólido, permitiendo la formación de una corteza plástica y que en su interior siga fluyendo la lava liquida, formando en ocacione largos tubos (o túneles) de lava.
La variedad a, en constraste, se caracteriza por una superficie extremadamente áspera y cortante, y por un avance irregular de los gruesos flujos de ese tipo, producido por acumulaciones y desmoronamientos sucesivos del frente.
Ejemplos de estos tipos de flujos de lava pueden ser fácilmente observados alrededor de los volcanes Paricutín (Michoacán) y Xitle (en el Pedregal de San Angel , D.F.).
Otro tipo de flujo de lava muy común en volcanes con productos más ácidos y más viscosos, es la lava de bloques. Estos bloques de lava, con su interior incandescentes, descienden por la pendiente de un volcán en formaa de pequeñas avalanchas, que ruedan cuesta abajo formado lenguas de lava similares a las de un flujo líquido.
Un claro ejemplo de este tipo, puede observarse en el volcán de Fuego de Colima, donde desde 1975 se ha producido varias lenguas de lava de bloques. Este proceso ha continuando en forma intermitente hasta la fecha.
La velocidad de avances y los alcances de los flujos de lava son muy variados. Los reportes más comunes sitúan las velocidades observadas con mayor frecuencia en el rango de 5 a 1000 m/hr, pero excepcionalmente se han observado flujos de erupciones islandianas o hawaianas que alcnazan  km/hr (Nyragongo , Zaire) y hasta 64 km/hr (Mauna Loa, Hawai). Los alcances máximos reportados son de 11 km para lava de bloques y 45 km para lavas de tipo hawaiano. En contraste, los flujos de lava de bloques y otros tipos de flujos de lavas más viscosas , avanzan por lo general en forma muy lenta, a razón de unos cuantos metros por día y su alcance está muy limitado por las pendientes del terreno.
Los daños que pueden llegar a producir los flujos de lava son muy distintos. Desde luego, la pérdida de tierras laborables por la cobertura del terreno por lava es el más común
Como ejemplos de este tipo de daño pueden citarse en México; los casos de erupciones del Xitle (Sur del D.F.) alrededor del año 470 A.C; del Jorullo (Michoacán), que se desarrolló en el periodo 1759 - 1774 y del paricutín (Michoacán ), es el campo de lava (frecuentemente referido como malpaís) cubrió aproximadamente 72 km2 de tierras laborables , efectuando gravemente la cultura de Cucuilco, mientras que en el segundo el área cubierta fue alrededor de 9 km2 destruyendo fincas y ranchos . El tercero cubrió cerca de 25 km2 (Villafana, 1907; Flores, 1944; Trask, 1944; Krauskopf, 1948; Atl, 1950; Wilcox , 1954; Mooser, 1957; Zavala, 1982).
La périda de construcciones pueden también ejemplificarse con la erupción del Paricutín. En los primeros días de 1944, un flujo de lava que tardó tres días en desplazarse desde el volcán, alcanzó al pueblo de Paricutín, a una velocidad de unos 30 m/hr, cubriéndolo por completo. En mayo de 1944, San Juan Parangaricutiro es también alcanzado por otro flujo similar, moviéndose a 25 m/hr, destruyéndolo casi en su totalidad.
El efecto destructivo proviene principalmente del peso de la lava que, con una densidad típica en el rango de 2.7 a 2.9 g/cm3, aplasta las edificaciones de menor altura. Sin embargo, un edificio de altura suficiente que exceda el espesor del flujo de lava, podría en principio resistir el avance de éste. Tal fue el caso de la iglesia de San Juan Parangaricutiro, cuyas partes más altas están relativamente poco dañadas, aunque rodeadas por el flujo de lava.
La razón de esto es que la presión dinámica que puede ejercer lateralmente un flujo de lava sobre un edificio de está dada por dv 2 /2, donde d es la densidad de la lava del flujo y v su velocidad. Se bien la densidad de la lava puede ser considerable como se indica arriba, la velocidad de avance es por lo general tan baja, que la dependencia cuadrática con ella reduce grandemente el valor que pueda alcanzar esta presión.
Así por ejemplo, la presión dinámica ejercida por el flujo de lava sobre las paredes de la iglesia de San Juan Parangaricutiro se estima que fué del órden de tan sólo 0.07 Nw/m2 , muy pequeña comparada con la presión ejercida por el peso .
Estas consideraciones pueden ser importantes en el diseño y construcción de edificaciones en zonas volcánicas de energía nuclear o de otro tipo , e incluso cualquier otra estructura cuya resistencia sea crítica para la seguridad de la región circundante
Estos efectos destructivos pueden atribuirse con mayor frecuencia a lavas del tipo aa o pahoehoe, que por su relativa menor viscosidad pueden viajar sobre terrenos con menor pendiente.
Los flujos de lavas más viscosas, que generalmente se presentan como coladas de lava de bloques, aunque también pueden llegar a desplazarse como flujos continuos y avanzar sobre terrenos con pendientes fuertes. Estos se detienen cuando la pendiente del terreno es menor que aproximadamente el 15%. Sim embargo, los flujos de lava de bloques pueden fragmentarse y generar derrumbes o avalanchas de rocas incandescentes que al deshacerse pueden liberar cantidades considerables de su polvo piroclástico , como fue el caso de la actividad del Volcán de Fuego de Colima en Abril 16 y 18 de 1991.

B).- FLUJOS PIROCLASTICOS.

El término " flujo piroclástico" se refiere en formas genérica a todo tipo de flujos compuestos por fragmentos incadescentes. Una mezcla de partículas sólidas o fundidas y gases a alta temperatura que pueden comportarse como líquido de gran movilidad y poder destructivo. A ciertos tipos de flujos piroclásticos se les denomina nuees ardentes (nubes ardientes ). Estos flujos, comúnmente se clasifican por la naturaleza de su origen y las características de los depósitos que se forman cuando el material volcánico flotante en los gases calientes se precipita al suelo. El aspecto de los flujos piroclásticos activos(flujos activo es aquél que se produce durante una erupción, y flujo, sin calificativo, sólo se refiere al depósito) es por demás impresionante.
Es particularmente vívida la descripción que hace Plinio el Joven de la erupción del Vesubio en el año 79 D.C., mencionada anteriormente,
"… Ominosa, detrás nuestro, nube de espeso humo se desparramaba sobre la tierra como una avalancha…".
El poder destructivo de los flujos piroclásticos dependen fundamentalmente de sus volúmenes y de sus alcances . El primer factor está controlado por el tipo de erupción que los produce y el segundo principalmente por la topografía del terreno. En térmionos generales, se pueden distinguir tres tipos de flujos de acuerdo al tipo de erupción que los produce (Wiirms y McBirney, 1979): Fujos relacionados con domos o con desmoronamientos de los frentes de lava ; flujos producidos directamente en cráteres de cumbre y flujos descargados desde fisuras.
Entre los flujos piroclásticos relacionados con domos, se distinguen dos tipos que varían grandemente en su poder destructivo. Uno es el tipo Merapiano, en referencia al volcán Merapi de Java, que consiste en flujos o avalanchas de origen no explosivo, producidos por gravedad, a partir de domos de cumbre en expansión, que los contiene y generan avalanchas de material caliente que se deslizan sobre los flancos del volcán hasta cerca de sus bases. Algunas avalanchas Merapianas se pueden producir también desde los frentes de flujos de lava de bloques que descienden sobre los flancos del volcán. Estos flujos pueden ser disparados por movimientos de los domos, por temblores que sacuden las estructuras o por algún otro factor externo.
Un ejemplo de este tipo de fllujos ha podido ser observado desde 1975 en el Volcán de Fuego de Colima, aunque no ha tenido grandes efectos destructivos, salvo algunos incendios en pequeñas zonas boscosas en la base del volcán
En contraste, otro tipo de flujos piroclásticos sumamente destructivos relacionados con domos de cumbre, es el llamado tipo Peléeano (Nube Ardiente), referidos a la desvastadora erupción del Monte Pelée , en Martinica, pequeña isla de posesión francesa en el Caribe, el 8 de mayo de 1902, que asoló la ciudad capital de St.Pierre causando cerca de 29,000 víctimas.
Generalmente, se producen durante las fases iniciales del crecimiento de domos, y sus depósitos están formados por ceniza , lapilli y bombas; todo proveniente de magma juvenil, rico en volátiles disueltos; aunque también pueden contener bloque líticos de material no juvenil del volcán, dependiendo esto de qué parte del domo sea emitido el flujo.
En el caso de explosiones de ángulo bajo, en las que la presencia misma del domo dirige la fuerza de la explosión lateralmente, las componentes horizontales de la velocidad de los materiales sólidos del flujo pueden ser muy altas, estimándose hasta en 150 m/seg.
Otra modalidad de flujos piroclásticos destructivos se da cuando éstos se originan en cráteres abiertos, que producen grandes columnas eruptivas que pueden penetrar la estratosfera, y sobre las cuales se discute en el capítulo de productos de caída libre.

C).- LAHARES

Los lahares son flujos que generalmente acompañan a una erupción volcánica; contienen fragmentos de roca volcánica, producto de la erosión de las pendientes de un volcán. Estos se mueven pendiente abajo y pueden incorporar suficiente agua, de tal manera que forman un flujo de lodo. Estos , pueden llevar escombros volcánicos fríos o calientes o ambos, dependiendo del origen del material fragmentario. Si en la mezcla agua-sedimiento del lahar hay un 40-80 % por peso de sedimiento entonces el flujo es turbulento, y si contiene más del 80 % por peso del sedimento, se comporta como un flujo de escombros. Cuando la proporción de fragmentos de roca se incrementa en un lahar (especialmente gravas y arcilla), entonces el flujo turbulento se convierte en laminar.
Un lahar puede generarse de varias maneras:
  1. Por el busco drenaje de un lago cratérico, causado quizás por un erupción explosiva, o por el colapso de una pared del cráter.
  2. Por la fusión de la nieve o hielo, causada por la caída de suficiente material volcánico a alta temperatura.
  3. Por la entrada de un flujo piroclástico en un río y mezcla inmediata de éste con el agua.
  4. Por movimiento de un flujo de lava sobre la cubierta de nieve o hielo en la parte cimera y flancos de un volcán.
  5. Por avalanchas de escombros de roca saturada de agua originadas en el mismo volcán.
  6. Por la caída torrencial de lluvias sobre los depósitos de material fragmentario no consolidado.
Como ejemplo de este tipo de flujo tenemos el gran lahar formando durante la erupción del Monte Santa Helena el 18 de mayo de 1980, con un deslizamiento masivo de escombros de roca, saturado de agua en un flanco de volcán. Este flujo llegó valle abajo hasta una distancia de 25 Km, aunque una removilización posterior hizo que éste se extendiera unos 70 Km más allá de su primera llegada. La distancia que puede alcanzar un lahar depende de su volumne, contenido de agua y la pendiente del volcán a partir de donde se genera.
Los lahares, también pueden ser causados por la brusca liberación del agua almacenada en un glaciar sobre un volcán, y que puede deberse a una rápida fusión del hielo por condiciones meteorológicas o por una fuente de calor volcánico.
La forma y pendiente de los valles también afecta la longitud de estos. Un valle angosto con alguna pendiente permitirá que un cierto volumne de lahar se pueda mover a gran distancia, mientras que un valle amplio y de poca pendiente dará lugar a que el mismo se disperse lentamente y se detenga dentro de una distancia más corta.
Las velocidades de estos flujos están determinadas por las pendientes. Por la forma de los cauces. Por la relación sólidos-agua y de alguna manera por el volumen. Las velocidades más altas reportadas son aquellas alcanzadas sobe las pendientes de los volcanes. En el Monte Santa Helena por ejemplo, el lahar causado por la erupción del 18 de mayo de 1980 alcanzó, en sus flancos, una velocidad de más de 165 Km/hr; sin embargo, en las partes bajas del mismo, la velocidad promedio sobre distanciasde varias decenas de Km fue de menos de 25 Km/hr.
Los lahares pueden dañar poblados, agricultura y todo tipo de estructura sobre los valles, sepultando carreteras, destruyendo puentes y casas e incluso bloqueando rutas de evacuación. También forman represas y lagos que al sobrecargarse, se rompen generando un peligro adicional.
Es bien conocido el triste caso de la actividad del Nevado El Ruíz, en Colombia, el 13 de noviembre de 1985 , en el que una serie de erupciones relativamente menores dieron origen a la peor catástrofe conocida en el territorio de Colombia. Las cenizas expulsadas cayeroon durante varias horas sobre el glaciar y la nieve de la cumbre, fundiéndolos y formando un lahar que, desplazándose a una velocidad media estimada en 12 m/s, arrasó la población de Armero, a 55 Km de distancia, causando cerca de 25 000 víctimas.
Una manera de limitar los fectos de estos lahares, es construir diques y otras estructuras para controlar los cursos de sus flujos, de tal manera que puedan encauzarse zonas planas sin causar daño, o bien estructuras que disminuyan su energía "filtrando" las rocas más grandes que arrastran los lahares.

D.- CENIZA DE CAÍDA LIBRE

La ceniza volcánica que se deposita, cayendo lentamente desde alturas considerables, 
consiste de fragmentos piroclásticos muy pequeños de material juvenil; estos es, el producto de la fragmentación extrema de lava fresca. Se denomina de caída libre y generalmente tiene un diámetro entre 1/16 mm y 2 mm. La ceniza fina es aquella que tiene un diámetro menor d 1/16 mm. En ocasiones, cuando el magma contiene numerosos cristales, los sólidos se separan del líquido para formar ceniza cristalizada.
Estos depósitos, comúnmente son conocidos como capas de ceniza, cuando se consolidan son llamadas tobas. Estas cenizas frescas, frecuentemente contienn fragmentos de tamaño grande, por lo que pueden llamarse ceniza-lapilli o toba-lapilli en caso de contener moderado o abundante lapilli. Si contienen bloques de roca, entonces será toba-brecha; y será toba aglomerado si contiene bombas volcánicas.
Durante una explosión, cerca de la boca del volcán se acumulan los fragmentos de caída libre en forma de capas y cada una de ellas indicará una explosión separada; sin embargo, sólo la ceniza más fina es arrastrada por el viento a grandes  no pudiendo distinguirse, en este último caso , los depósitos de explosiones individuales. Aquí, las capas de ceniza tienden a formar un manto continuo sobre la topografía. Las capas de lapilli y ceniza generalmente aparecen bien clasificadas, lo que les permite mostrar una gradación en tamaño tanto vertical como lateralmente. Los fragmenteos más grandes ocupan la base de una capa ya que caen más rápido que los pequeños, y por la misma razón los más grandes tambien caen más cerca de la boca. Los pequeños tienden a caer más lejos, arrastrados por el viento.
Ocasionalmente, las capas de ceniza muestran un incremento en el tamaño de grano hacia arriba, lo que se interpreta como un incremento persistente de la fuerza explosiva durante el desarrollo de un erupción .
Una erupción explosiva violenta puede inyectar ceniza fina en los niveles superiores de la atmósfera y en la estratosfera, con lo que ésta viajará grandes distancias en el planeta, como ocurrió con la erupción del volcán Krakatoa en 1883; la del Chichonal en 1982 y la del monte Pinatubo en 1991. Estos últimos ejemplos han causado cambios atmosfericos y climáticos, ya que las partículas de ceniza han dado lugar a la formación de aerosoles por la precipitación de sulfatos sobre los núcleos de condensación, además de reducir la cantidad de rayos solares que inciden sobre la superficie terrestre.
La velocidad de movimiento de la ceniza depende de la velocidad del viento, por ejemplo la erupción del Katmai, Alaska en 1941, que esparció ceniza en un área de unos 115 000 Km2 ,llegó a acumularse en espesores de hasta 30 cm a 160 Km de distancia de la boca eruptiva.
La capas de ceniza han sido útiles en la correlación cronológica de la actividad volcánica de un edificio en particular, dando información, tanto de su evolución como de su grado de explosividad y peligrosidad.
En muchas ocasiones las capas son muy semejantes, lo que hace difícil o imposible diferenciarlas, aunque en estos casos la ceniza se reconoce primordialmente por su composición e índice refractivo de los fragmentos vidriados, por la naturaleza y abundancia de cristales; además de otras caracteristícas , tales como espesor, color y posición estratigráfica.
Otros aspectos interesantes de la ceniza de caída libre es el cambio de su composición en relación con la distancia recorrida desde el punto de erupción , ya que cuando es eyectada, ésta consiste en una mezcla de cristales son más densos que el vidrio, tienden a caer más rápido que aquél. Por tanto, los cristales son más abundantes en los depósitos de ceniza cercanos a la boca eruptiva y tienden a disminuir en cantidades en la medida en que se incrementa la distancia desde ella.
El daño principal que causa la ceniza ocurre cuando se acumula en los techos de las construcciones, provocando su colapso, situación que se puede evitar limpiando a intervalos la ceniza acumulada sobre los mismos. La inhalación de ceniza tambien es peligrosa, por lo que se recomienda usar máscara contra polvo o al menos un simple pedazo de tela para cubrir la nariz y la boca. Donde haya equipos mecánicos trabajando, se recomienda usar filtros adecuados para evitar para evitar que el polvo penetre y les cause corrosion y rápido desgaste.
De ser posible, también se deben trasladar los animales y ganado doméstico a un lugar seguro, pues de lo contrario pueden morir debido al polvo y la ceniza o al agua y vegetales contaminados. La ceniza también reduce la visibilidad, por lo que una evacuación durante una lluvia de ella es difícil o hasta imposible y en estos casos se ha llegado a recomendar a la gente que no salga de sus casas hasta que restaure la visibilidad y que sólo salga brevemente para limpiar los techos de sus construcciones, siempre que la zona en cuestión no se encuentre dentro del alcance de flujos piroclásticos o lahares.
En áreas donde ha caído suficiente ceniza, acumulación provoca la defoliación y caída de ramas de árboles, caída de techos, irritación de las vías respiratorias en personas y animales, contaminación de suministros de agua, taponamiento de drenajes y adición de elementos químicos menores al suelo, que pueden efectuarlo (según su composición , positiva o negativamente) y en secuencia a los alimentos que produzca. Aunado a esto, si llueve en abundancia, se generán flujos de lodo que son aún más peligrosos, ya que se crean a lo largo de corientes que pueden destruir instalaciones hidroeléctricas carreteras y poblaciones asentadas en las riberas de los ríos.
En el caso del volcán Chichonal, la caída de ceniza produjo daños a cultivos , interrupción total de comunicaciones aéreas y parcial en las terrestres en los estados de Chiapas, Tabasco, Campeche y parte de Oaxaca, Veracruz y Puebla, principalmente.

  • Sismos: Los sismos son perturbaciones súbitas en el interior de la tierra que dan origen a vibraciones o movimientos del suelo; la causa principal y responsable de la mayoría de los sismos (grandes y pequeños) es la ruptura y fracturamiento de las rocas en las capas más exteriores de la tierra. Como resultado d un proceso gradual de acumulación de energía debido a los fenómenos geológicos que deforman la superficie de la tierra, dando lugar a las grandes cadenas montañosas.En el interior de la tierra ocurre un fracturamiento súbito cuando la energía acumulada excede la resistencia de las rocas. Al ocurrir la ruptura, se propagan (en el interior de la tierra) una serie de ondas sísmicas que al llegar a la superficie sentimos como un temblor. Generalmente, los sismos ocurren en zonas de debilidad de la corteza terrestre que llamamos fallas geológicas. Existen también sismos menos frecuentes causados por la actividad volcánica en el interior de la tierra, y temblores artificiales ocasionados por la detonación de explosivos. El sitio donde se inicia la ruptura se llama foco y su proyección en la superficie de la tierra, epicentro. El fenómeno sísmico es similar al hecho de arrojar un objeto a un estanque de agua. En ese caso, la energía liberada por el choque de dicho objeto con la superficie del agua se manifiesta como un frente de ondas, en este caso circular, que se aleja en forma concéntrica del punto donde cayó el objeto.En forma similar, las ondas sísmicas se alejan del foco propagándose por el interior de la tierra, produciendo vibraciones en la superficie. Por ejemplo, el sismo del 19 de septiembre de 1985, cuyo epicentro se ubicó en la costa de Michoacán, fue sentido a distancia de hasta 1 000 km del epicentro.En el caso de la tierra existen fundamentalmente dos tipos de ondas sísmicas internas, es decir, vibraciones que se propagan en el interior de la tierra: ondas compresionales o longitudinales y ondas de corte o cizallamiento. Las ondas compresionales, llamadas P en la terminología sismológica, comprimen y dilatan el medio donde se propagan en una dirección de propagación del frente de ondas. Las ondas de sonido, por ejemplo, son ondas compresionales que se propagan en el aire. El segundo tipo de ondas que se propagan en sólidos son las ondas de corte, llamadas ondas S. En este caso la deformación que sufre el sólido es en dirección perpendicular a la trayectoria del frente de ondas. La propagación de esta ondas produce un esfuerzo cortante en el medio y de ahí el nombre de ondas de corte o cizallamiento.

Procesos que modela la superficie terrestre:


La superficie topográfica se modifica continuamente por la acción conjunta de procesos geológicos externos (erosión litoral, erosión de suelos,sedimentación, movimientos de glaciares, colapsos kársticos, expansividad de arcillas, migración de dunas, etc.) y de procesos geológicos internos (movimientos de placas litosféricas, terremotos,erupciones volcánicas, etc.). Estos procesos, además del clima y la litología y estructura de los materiales terrestres, condicionan el tipo de relieve.El cambio del relieve terrestre se produce adiferente escala (desde desplazamientos de las placas litosféricas hasta la migración de pequeñas dunas), con diferente magnitud (desde la variación de varios cientos de metros de la cima de un volcánhasta décimas de milímetro por procesos de erosión) y con distinto rango de tiempo (desde fenómenos instantáneos como la caída de
rocas hasta otros que duran anos como los procesos de reptación).Losterremotos, las erupciones volcánicas, el levantamiento de cadenas montañosas, entre otros, son desencadenados por la energía interna de la Tierra, siendo éstos responsables de la construccióncontinua de nuevo relieve. Aunque algunos de estos procesos, como la formación de una cordillera, son lentos (varios mm/ano), otros llegan a tener un carácter violento y repentino. Por ejemplo, durante laerupción del volcán St. Helens (Estados Unidos), el 18 de mayor de 1980, disminuyó la elevación de la cima casi 400 m. La ultima erupción en España, producida en el volcán Teneguía (Isla de La Palma) en1971 arrojó un volumen aproximado de materiales volcánicos de 40 millones de metros cúbicos. Además de las erupciones volcánicas, los terremotos constituyen otro de los fenómenos que modifican latopografía en mayor grado. Uno de los eventos más espectaculares fue el desplazamiento de más de 20 m. registrados en algunos puntos de la Falla de San Andrés (California).

Acción de los agentes erosivos:

  • Agua: es el principal protagonista de la meteorización natural. Actúa como abrasivo (partículas flotantes) y disolvente, participa en la disolución y depósito de las sales y genera reacciones químicas tanto por hidrólisis como por oxidación. Por otra parte, el agua que se infiltra en las grietas de los minerales, al helarse, actúa como una palanca que puede romper la roca en pedazos. Además es el principal medio de transporte de las sustancias disueltas.

  • Aire: el viento transporta partículas sólidas en suspensión que actúan como una verdadera lija sobre la superficie de las rocas. Además, diversos gases atmosféricos, algunos naturales y otros procedentes de la actividad industrial, reaccionan químicamente con los minerales de las rocas. Como elemento de transporte, el viento ocupa una posición secundaria en relación con el agua.

  • Clima: relacionado con la congelación del agua, el clima participa en la meteorización, sobre todo por medio de los cambios bruscos de temperatura, que dan lugar a un proceso de dilatación y contracción que puede disgregar la roca. El mecanismo erosivo se acelera si los minerales de la roca reaccionan de modo diferente ante las temperaturas.

    • Actividad humana: las obras y construcciones del ser humano han constituido desde siempre un agente erosivo de cierto nivel. En la actualidad, la emisión de productos contaminantes a la atmósfera ha aumentado el potencial de meteorización química de la atmósfera. Buen ejemplo de ello es el denominado «mal de la piedra», que produce importantes deterioros en los edificios.

    miércoles, 5 de noviembre de 2014

    LA TIERRA

    Bienvenidos nuevamente a DE TODO UN POCO!!!

    LA TIERRA

    La Tierra es el tercer planeta desde el Sol y quinto en cuanto a tamaño. Gira describiendo una órbita elíptica alrededor del Sol, a unos 150 millones de km, en, aproximadamente, un año. Al mismo tiempo gira sobre su propio eje cada día. Es el único planeta conocido que tiene vida, aunque algunos de los otros planetas tienen atmósferas y contienen agua.
    La Tierra no es una esfera perfecta, ya que el ecuador se engrosa 21 km, el polo norte está dilatado 10 m y el polo sur está hundido unos 31 metros.
    La Tierra posee una atmósfera rica en oxígeno, temperaturas moderadas, agua abundante y una composición química variada. El planeta se compone de rocas y metales, sólidos en el exterior, pero fundidos en el interior.

    Teorías de la formación de la Tierra

    El planeta tierra se formó en el vacío del espacio hace más de 4 mil millones de años. Las teorías sobre la formación concluyen que la tierra y otros planetas están formados a través de los procesos de la gravedad y la acumulación de polvo y gas en el vacío del espacio. Esta teoría básica ha sido revisada y añadida como la explicación del sistema solar y como el universo se ha expandido.

    La primera teoría fue propuesta por Immanuel Kant en 1755, esta teoría sugiere que el sol y los planetas se formaron cuando la gravedad juntó a las partículas de polvo y gas de la nebulosa para formar un disco plano y giratorio de materia muy densa. Este disco, se va la hipótesis, eventualmente giró por si mismo en los planetas y el sol del sistema solar. Pierre Laplace amplió esta idea y la llamó la hipótesis nebular en 1796. Él creía que los planetas y las estrellas eran fragmentos de materia que se fusionaron después de haber hecho una separación de los bordes de la nebulosa por la fuerza centrifuga.

    Esta segunda teoría fue desarrollada independientemente en 1900 por Carl Von Weizsacker y Gerard Kuiper, esta teoría le pusieron el nombre de la hipótesis del protoplanetal, esta teoría fue mejorada por la hipótesis nebular. La hipótesis del protoplaneta supone que los sistemas solares se forman cuando el polvo y los gases giran alrededor de un colapso nebuloso. La materia va girando alrededor de este núcleo denso y comienza a pegarse y forma pequeños planetesimales que caen fuera del otro destruyéndose y formando diferentes formas de protoplanetas. Entonces, el protosol, en el centro de toda la materia, se hace denso y lo suficientemente caliente para que el proceso de fusión nuclear comience a ocurrir y la estrella sea “activada”.

    Las capas de la Tierra

    La atmósfera: es el océano de aire que nos rodea, para efectos prácticos y de estudio, se ha dividido en diversas zonas o capas en relación con la altitud y sus funciones. Estas divisiones y nomenclatura de las mismas son bien dispares, según los científicos y países que las han establecido.
    La composición y la temperatura de la atmósfera varía con la altura. La tendencia general observada es que el aire se va haciendo menos denso en la medida que aumenta la altura, hasta llegar a ser imperceptible.  De acuerdo con las últimas investigaciones realizadas y tomando en cuenta la variación vertical de la temperatura, en la atmósfera se pueden distinguir seis capas:
    • Tropósfera: Es la capa de aire que está en contacto con la superficie terrestre, por loEstas diferencias provocan la formación de vientos, nubes y precipitaciones, los cuales determinan el estado del tiempo en un lugar y hacen que esta capa sea la más importante para la meteorología, ya que es en la tropósfera donde tienen lugar todos los fenómenos del clima; de ahí que su nombre "tropósfera" (del griego tropos: cambio) signifique "esfera de cambios".Al ascender por la tropósfera, el aire se va enfriando cada vez más. Se ha calculado que la temperatura disminuye unos 6° C por cada kilómetro de altura (0,6º C. por cada cien metros de altitud), alcanzando temperaturas extremadamente bajas, inferiores a 0° C, en la zona final de esta capa.
      que es las más densa, pues se concentra en ella el 90 por ciento del peso de la atmósfera. Contiene todos los gases y la mayor parte del vapor de agua y en ella se producen todos los cambios climáticos. Debido a sus características, es que en esta capa  se desarrolla la vida.
      La altura de la tropósfera es de más o menos 10 km, y su frontera con la capa superior se denomina tropopausa. No obstante, el confín de la tropósfera no es muy conocido, especialmente en el hemisferio sur. En elecuador parece llegar a una altitud de 16 a 17 km, mientras que en los polos sólo mide entre seis y ocho km.

    • Estratósfera: Encima de la tropopausa, pasada la región de los vientos helados, se encuentra la estratósfera, que llega hasta una altitud de alrededor de 25 km. Esta capa se halla constituida, en general, por estratos de aire con poco movimiento vertical, aunque sí lo tienen horizontal. En esta zona, el aire está casi siempre en perfecta calma por lo que es ideal para el transporte aéreo. En ella prácticamente no existe el clima, aunque algunas veces se encuentran unas ligeras nubes denominadas irisadas, por presentar sus bordes los colores del iris.Debido a la radiación solar, que alcanza directamente la estratósfera, esta capa presenta mayor temperatura que los últimos estratos de la tropósfera.El límite de esta capa se llama estratopausa. Las antiguas nomenclaturas fijaban la altura de la estratósfera hasta los 80 km, pero los nuevos experimentos científicos determinan que esa capa finaliza a unos 25 km, en donde empieza la quimiósfera.

    • Quimiósfera: la razón de esta subdivisión moderna de la antigua estratósfera, obedece a que a partir de los 25 a 30 km de altitud la temperatura del aire comienza a aumentar debido a que los rayos ultravioleta del Sol, de gran intensidad a esa cota, transforman el oxígeno del aire en una variedad denominada ozono, que simultáneamente los absorbe y se calienta, o sea, que en esa capa se producen reacciones químicas. Por tanto, en la composición del aire se destaca la presencia de una delgada capa de ozono, situada aproximadamente a 30 kilómetros de la superficie de la Tierra.Se estima que la quimiósfera llega hasta unos 80 km de altitud, límite en que comienza la mesósfera.La concentración máxima de ozono en la quimiósfera tiene lugar a unos 40 km de altitud y forma una especie de cinturón o faja protectora que se denomina ozonósfera. Esta faja, al producir la dispersión de la luz solar, hace que veamos el cielo de color azul, cuando es negro en realidad, como han comprobado los astronautas. Gracias a esta capa que absorbe gran cantidad de rayos ultravioleta, es posible la vida vegetal y animal en la superficie de la Tierra que, de otra manera, sería rápidamente aniquilada por esa radiación.

    • Mesósfera: esta capa se ubica a continuación de la quimiósfera y alcanza hasta unos 90 kilómetros de altura desde el nivel del mar.  Se caracteriza porque desde su limite con la estratósfera, la temperatura va disminuyendo hasta valores tan bajos como -110° C (bajo cero) en donde comienza la capa siguiente.  En esta capa ya no existe vapor de agua y la proporción de los gases restantes comienza a disminuir.En la mesósfera se producen también partículas cargadas eléctricamente, los iones, que son átomos o moléculas que han ganado o perdido electrones.Otro fenómeno observable, en la mesósfera es la caída de meteoritos, que al entrar en contacto, con esta capa y a causa de la fuerza de fricción, emiten  luz, la que cesa cuando la masa del meteoro ha sido totalmente consumido.  Esto es lo que nosotros conocemos como "estrellas fugaces", las que vemos pasar sorpresivamente en el cielo.

    • Termósfera y Ionósfera: la termósfera sería la quinta capa de la atmósfera de la Tierra. Se encuentra arriba de la mesósfera, abarcando desde los 90 hasta los 500 kilómetros. A esta altura, el aire es muy tenue y la temperatura cambia con la actividad solar. Si el sol está activo, las temperaturas en la termósfera pueden llegar a 1,500° C y ¡hasta más altas! La termósfera de la Tierra también incluye la región llamada ionósfera.
      Para los científicos no ha sido posible definir con exactitud el limite superior de la ionósfera, ya que, los gases que aún quedan en la parte externa de esta capa, se intercambian continuamente con los del espacio exterior.La diferencia que tiene con las capas inferiores, es que está formada casi totalmente por partículas cargadas o ionizadas que se producen por la radiación ultravioleta al arrancar electrones a las moléculas gaseosas. Debido a esta naturaleza eléctrica, la temperatura de la ionósfera tiende a aumentar hasta una altura aproximada de unos 500 kilómetros, donde alcanza unos 1.500 grados centígrados.Una propiedad importante de la ionósfera en el ámbito de las radiocomunicaciones, es que los iones presentes en esta capa pueden reflejar (o hacer "rebotar") las ondas de radio, permitiendo la comunicación entre los distintos lugares del globo terrestre.

    • Exósfera: se encuentra a partir de los 500 kilómetros de altura desde el nivel del mar y en ella los gases atmosféricos como el oxígeno y el nitrógeno casi no existen y apenas hay moléculas de materia. Es la capa más extensa de la atmósfera y es la región que exploran los satélites artificiales y no tiene la menor influencia sobre los fenómenos meteorológicos.La composición de la exósfera se forma principalmente por los gases livianos como el hidrógeno y el helio; éstos son gases tan ligeros que tienden a escaparse del campo gravitacional de la Tierra dispersándose en el espacio.Debido a la densidad extremadamente baja de esta capa es decir, el escaso número de moléculas por unidad de volumen, es que la temperatura de la exósfera es una propiedad difícil de analizar en este nivel.  No olvides que la temperatura depende del movimiento de las partículas, y para el caso de la atmósfera se trata además de moléculas de diferentes gases.
    Estrustura de la tierra:

    Desde el exterior hacia el interior podemos dividir la Tierra en cinco partes:

    • Atmósfera: Es la cubierta gaseosa que rodea el cuerpo sólido del planeta. Tiene un grosor de más de 1.100 km, aunque la mitad de su masa se concentra en los 5,6 km más bajos.


    • Hidrosfera: Se compone principalmente de océanos, pero en sentido estricto comprende todas las superficies acuáticas del mundo, como mares interiores, lagos, ríos y aguas subterráneas. La profundidad media de los océanos es de 3.794 m, más de cinco veces la altura media de los continentes.

    • Litosfera: Compuesta sobre todo por la corteza terrestre, se extiende hasta los 100 km de profundidad. Las rocas de la litosfera tienen una densidad media de 2,7 veces la del agua y se componen casi por completo de 11 elementos, que juntos forman el 99,5% de su masa. El más abundante es el oxígeno, seguido por el silicio, aluminio, hierro, calcio,
      sodio, potasio, magnesio, titanio, hidrógeno y fósforo. Además, aparecen otros 11 elementos en cantidades menores del 0,1: carbono, manganeso, azufre, bario, cloro, cromo, flúor, circonio, níquel, estroncio y vanadio. Los elementos están presentes en la litosfera casi por completo en forma de compuestos más que en su estado libre.
      La litosfera comprende dos capas, la corteza y el manto superior, que se dividen en unas doce placas tectónicas rígidas. El manto superior está separado de la corteza por una discontinuidad sísmica, la discontinuidad de Mohorovicic, y del manto inferior por una zona débil conocida como astenosfera. Las rocas plásticas y parcialmente fundidas de la astenosfera, de 100 km de grosor, permiten a los continentes trasladarse por la superficie terrestre y a los océanos abrirse y cerrarse.

    • Manto: Se extiende desde la base de la corteza hasta una profundidad de unos 2.900
      km. Excepto en la zona conocida como astenosfera, es sólido y su densidad, que aumenta con la profundidad, oscila de 3,3 a 6. El manto superior se compone de hierro y silicatos de magnesio como el olivino y el inferior de una mezcla de óxidos de magnesio, hierro y silicio.

    • Núcleo: Tiene una capa exterior de unos 2.225 km de grosor con una densidad relativa media de 10 Kg por metro cúbico. Esta capa es probablemente
      rígida, su superficie exterior tiene depresiones y picos. Por el contrario, el núcleo interior, cuyo radio es de unos 1.275 km, es sólido. Ambas capas del núcleo se componen de hierro con un pequeño porcentaje de níquel y de otros elementos. Las temperaturas del núcleo interior pueden llegar a los 6.650 °C y su densidad media es de 13. Su presión (medida en GigaPascal, GPa) es millones de veces la presión en la superficie.
      El núcleo interno irradia continuamente un calor intenso hacia afuera, a través de las diversas capas concéntricas que forman la porción sólida del planeta. La fuente de este calor es la energía liberada por la desintegración del uranio y otros elementos radiactivos. Las corrientes de convección dentro del manto trasladan la mayor parte de la energía térmica de la Tierra hasta la superficie.